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ABSTRACT
Data science is emerging as a crucial 21st-century competence, influ-
encing professional practices from citing evidence when advocating
for social change to developing artificial intelligence (AI) models.
For middle and high school students, data science can put formerly
decontextualized subjects into real-world scenarios. Many existing
curricula, however, lack authenticity and personal relevance for
students. A critique of data science courseware cites the lack of
"author proximity," in which students do not contribute to the data’s
production or see their personal experiences reflected in the data.
This paper introduces a novel data science curriculum to scaffold
middle and high school students in undertaking real-world data
science practices. Through project-based learning modules, the cur-
riculum engages students and educators in investigating solutions
to community-based problems through visualization and analysis
of live sensor data and public data sets. Materials include adaptable
formative assessments to help teachers (especially those from non-
math and computing backgrounds) measure their students’ abilities
to identify statistical patterns, critically evaluate data biases, and
make predictions. As we pilot and continue to co-design with teach-
ers, we will look closely at whether the curriculum’s resources can
successfully support non-technical practitioners engaging in an
integrated curriculum.
ACM Reference Format:
Prerna Ravi, Robert Parks, John Masla, Hal Abelson, and Cynthia Breazeal.
2024. "Data comes from the real world": A Constructionist Approach to
Mainstreaming K12 Data Science Education. In Proceedings of the 2024 ACM
Virtual Global Computing Education Conference V. 2 (SIGCSE Virtual 2024),
December 5–8, 2024, Virtual Event, NC, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3649409.3691098

1 INTRODUCTION
Data science is emerging as a crucial 21st-century competence,
influencing professional practices from citing evidence when ad-
vocating for social change to developing artificial intelligence (AI)
models. ByMarch 2024, ten states offered data science to students in
grades 6-12, with an additional fifteen piloting curricula or setting
standards [13]. Understanding the nuances of data science can also
form a foundation for navigating the capabilities of AI; data science
and AI share competencies in understanding how personal data is
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used to train models and critically examining data with “skepticism
and interpretation” [33]. School administrators typically motivate
data science as a means for job readiness, social impact, and im-
proved math outcomes [44]. However, according to a recent survey
of high schoolers, the chief reasons to study data science are the
abundance of data available and intellectual proficiency with data,
with employment prospects a distant third place [27].

For middle and high school students, data science can put for-
merly decontextualized subjects such as math and statistics into
real-world scenarios. Many existing curricula, however, lack authen-
ticity and personal relevance for students. A critique of existing data
science courseware cites the lack of "author proximity": students
do not contribute to the data’s production or see their personal
experiences reflected in it [30]. An additional challenge is integrat-
ing data science as a formal subject into schools and supporting
teachers with professional development and assessments [21].

This paper introduces a novel curriculum to scaffold middle and
high school students in undertaking real-world data science prac-
tices. We intend to study how MIT App Inventor’s mobile data
science toolkit [12] could allow learners to visualize and analyze
both sensor data and public data sets. Through project-based learn-
ing modules aligned with the Big Ideas in K-10 Data Science [39],
the curriculum employs participatory data collection, allowing stu-
dents to lead investigations on topics of personal interest, to foster
higher authorship proximity to their data [2, 8, 28]. These modules
also include adaptable formative assessments to help teachers (espe-
cially those from non-math and computing backgrounds) measure
students’ abilities to identify statistical patterns, critically evaluate
data biases, and make predictions.

2 BACKGROUND
2.1 Data Sources and Learning Impact
Much of the scholarship on recent data science curricula for school
children categorizes courseware according to the provenance of
its data with implications on learning goals, student engagement,
and opportunities for critical inquiry [16, 17, 30]. Datasets can orig-
inate from learner-collected, fictional, or publicly available data,
allowing multiple opportunities to build learner competencies and
drive motivations [17]. Collecting sensor data can help students
engage meaningfully in data practices, explore statistical patterns,
and make inferences based on their knowledge of the data con-
text [16, 30, 31, 35, 40]. With publicly available data, students can
experience how data is used in the workforce and scientific prac-
tices [11, 30]. Rubin calls for students to develop the skills of “data
journalists,” understanding and interpreting data from others by
becoming familiar with the domain, the measurement process, po-
tential biases, and scientific limitations in producing that data [43].
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In the case of fictional data or publicly available data, however, re-
searchers warn that materials disconnected from contexts will fail
to engage students and fail to meet crucial learning goals such as
drawing conclusions and making predictions based on real-world
connections [21]. An additional constraint is the cost of materi-
als: sensor-based data science curricula have recently launched
[17, 20, 29, 48, 53], but some rely on expensive consumer wearables
or "probeware" — sensors made for the education market that must
stay tethered to a computer.

2.2 Equity and Constructionism in Data Science
Prior work has established the need for datasets and investigations
that actively engage students from historically underrepresented
communities. High engagement and task persistence are linked
to student work on personally meaningful topics, a core idea of
constructionism [6, 41]. Student-led work prompts youths’ concep-
tions of data and its limitations when creating meaningful data
artifacts within a social context [6, 18]. Recognizing that some data
collection methods can be biased toward specific research goals or
ideological agendas is essential for critically reflecting on the data’s
origins [24]. Additionally, Jiang et. al. suggest that data science prac-
ticed across disciplines validates multiple forms of participation
and supports epistemological pluralism [23, 46].

Cultivating data literacy for people in non-technical fields forms
an avenue for increasing equity in learning activities [8]. This
approach ensures that activities make sense within broader social
contexts, empowering students to use data to advocate for change
[14, 47]. By allowing learners to decide what questions to ask with
data and whether the necessary data has been collected, students
can better engage with real-world activities, bringing their lived
experience and prior knowledge to the classroom [9, 49]. Dangol
& Dasgupta, however, underscore the need for more research on
supporting teachers in implementing constructionist approaches
to teach data literacy [6].

3 CURRICULUM
The curriculum utilizes a hybrid approach with both learner gener-
ated and public data, allowing students to engage in sensemaking
about short- and long-term trends. The curriculum provides flexi-
bility for different learning goals, using low-dimensional data to in-
troduce concepts, messy datasets to demonstrate issues of bias, and
personally relevant datasets to deepen engagement [8, 33, 45]. By
employing an abstracted, block-based programming environment
within MIT App Inventor’s data science toolkit [12], the curriculum
can lower barriers for non-technical students and facilitate profes-
sional development for teachers. Enabling students to create custom
mobile apps for data collection and analysis also improves acces-
sibility in low-resource contexts where mobile phones are more
prevalent [42]. The curriculum incorporates learner-generated en-
vironmental data collected with micro:bit sensors, an approach not
widely used in previous work. We provide opportunities for stu-
dents to explore the capabilities and limitations of sensors, which
are essential for understanding how AI devices gather data and
interact with the world [33]. The curriculum has a significant focus
on data cleaning, an activity that occupies up to 80% of a data scien-
tist’s time [15, 28], but is often missing from contemporary student

resources (except in YouCubed and scant other materials) [37, 52].
Data cleaning activities are context-dependent, inviting students
to "dig into the circumstances surrounding data collection" [43] to
identify and address data anomalies and uncertainties [4, 28].

3.1 Teaching and Learning Materials
This curriculum includes educator guides, student resources, and as-
sessment modules for teaching data science practices aligned with
the Big 10 Ideas of Data Science [39]. The materials, openly acces-
sible on appinventor.mit.edu, feature structured activities, teaching
slides and scripts, and tool guides. Each project team (3-4 students)
needs one laptop, an iOS/Android phone/tablet supplied by the
student or school, and a micro:bit sensor ($17-22 each). The target
audience includes K-12 middle and high school educators (including
curriculum designers, formal and informal teachers, and school dis-
tricts) and students. The lessons described below show an example
of using environmental data, split across two modules. Each lesson
takes 60-90 minutes to complete.

3.1.1 Module 1: Environmental Data Collection using Mi-
cro:bits. This module aims to educate students on the fundamen-
tals of collecting, analyzing, and visualizing sensor data curated
from the environment. It provides students with a framework
needed to plan investigations for community challenges using IoT
sensors and to prepare them to share the evidence obtained.

Lesson 1: Hands-on experiments with sensors: This lesson
teaches students to connect sensors to a mobile device and visualize
the data. It starts with unplugged activities demonstrating sensor
functionality, followed by step-by-step instructions to connect sen-
sors to students’ custom mobile apps (created with App Inventor)
via BluetoothLE for real-time data visualization, and concludes with
a game for identifying sensor types as they correlate data outputs
with changes in the physical environment.

Lesson 2: Brainstorming sensor use cases: Students identify
sensors ubiquitous in their environment, discuss common and spe-
cialized sensors, and imagine their creative uses, enhancing their
understanding of how sensor technology gathers important data.
The lesson includes interactive activities such as mapping a typical
school day with sensor applications and using Slow Reveal Graphs
(an instructional routine to promote sensemaking of environmental
visualizations) [25].

Lesson 3: Project ideation: Students form teams to pursue their
project ideas, focusing on local environmental issues in their com-
munity. They brainstorm themes (e.g., air quality, water, sanitation,
etc.) using card games, vote on their favorite ideas, and formulate
research questions. After scouting sensor locations around their
school surroundings, they test for proper sensor placement, data
quality, and collection timelines to answer their research question,
then set up sensors to save data automatically to Google Sheets.

Lesson 4: Building data applications: Students use their team’s
custom app to import datasets, experiment with different graph
types and measurement units, and apply these principles to their
real-time sensor time series data, enhancing their analytical skills
and understanding of data visualization.

Lesson 5: Visualizing final sensor data: Students visualize
their group’s collected sensor data to identify and analyze trends
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relevant to their original research question. They customize their vi-
sualizations and apps and present their final projects to the commu-
nity, reflecting on their accomplishments, challenges, and directions
for future inquiries.

3.1.2 Module 2: Modeling and Predicting Climate Change.
In this module, students select a public dataset related to their
Module 1 sensor data. They review long-term curated datasets and
their contexts, exploring visualizations, modeling, predictions, and
inference through coding activities and scaffolded discussions.

Lesson 6: Visualizing a data set: Students discuss trends in
the sensor data gathered, linking them to broader environmental
and climate change issues. They validate their small data collection
by selecting curated long-term public datasets for further analysis.
Students review spreadsheet features, identify unusual data points,
and program their team’s app to visualize and explore possible
correlations between data series.

Lesson 7: Modeling data: Students start with an unplugged
activity to understand the concept of a line of best fit by visually
fitting lines to sample data points. Teachers use guided prompts to
discuss the value of models for trends, predictions, and confidence
levels. Student teams then add a line of best fit to their app visual-
izations and discuss non-linear models, the slope-intercept form,
and the correlation coefficient, tying these to their sensor data and
potential long-term data collection.

Lesson 8: Cleaning data: Teachers use lesson prompts to dis-
cuss the relevance of anomalies. Student teams distinguish between
in-context and out-of-context anomalies in their public data graphs,
code their apps to detect and remove selective anomalies, and eval-
uate the updated trend line. They then apply these concepts to their
sensor data, comparing emerging trends against the public dataset.

Lesson 9: Predictions and AI analysis with data: Students
identify trends in their public data sets, use the slope to predict
future values, and extend their graph’s domain in the app. They
program a generative AI chatbot within App Inventor to provide
additional context, interpretation, and analysis. Students examine
confounding variables (location, human judgment, standards, and
organizational ethics) in their personal and public datasets, recog-
nizing how these can skew results.

3.2 Assessments
Practitioners of project-based learning have noted the difficulty
in assessing 21st-century skills due to the wide range of cogni-
tive, interpersonal, and intrapersonal competencies involved [5, 19].
While standardized tests often focus on lower-order thinking skills,
our curriculum targets higher-order thinking, such as conceptual
statistical understanding, as outlined in GAISE II [1]. We also aim
to foster positive attitudes toward data science, including perceived
competence, enjoyment, and value, drawing from the Intrinsic Moti-
vation Inventory [32]. To measure conceptual growth, we integrate
open-response questions related to each of the four Big Ideas in K-
10 Data Science: (1) formulate statistical investigative questions, (2)
collect/consider data, (3) analyze data, (4) interpret and communi-
cate data [39]. Additionally, our curriculum integrates assessments
as pedagogical tools. Based on Condliffe’s work, we use short, for-
mative "exit tickets" at the end of each lesson for student reflection
and self-assessment [5, 7, 26]. These tickets focus on specific skills

taught in that lesson, guiding students through the statistical rea-
soning process over time [1]. We also base some of our questions
on the LOCUS project’s assessments, aligning with Common Core
and GAISE II standards [38]. This approach helps track learning
trajectories, informs teacher instruction, and provides consistent,
daily feedback to reinforce student learning [36].

4 DISCUSSION AND FUTUREWORK
In this paper, we present a novel data science curriculum enabling
students to become data readers, communicators, and makers [50,
51]. This is unlike typical sensor-based laboratory investigations
in which students carry out procedures without acting as agents
in producing and using data [17]. The curriculum aims to support
a scientific data collection process that serves students’ personal,
cultural, or sociopolitical goals [28] and multiple ways of knowing
[10]. Influenced by situated learning, it leverages school-based ex-
periences to mimic real-world data science practices [23]. While
we acknowledge that some students may not initially show inter-
est in environmental data [21], engagement can increase when
they reflect on direct community impacts such as heat islands and
flooding. Linking broad issues like climate change to students’ ex-
periences can enhance resonance [30, 34]. Integrating data science
with commonly taught subjects broadens its utility and opens inter-
disciplinary possibilities, making it more relevant to teachers and
students [22]. The curriculum can also be a springboard for integrat-
ing discussions on ethics, particularly in data selection, cleaning,
and critique. While students may implicitly engage with ethical
considerations when removing anomalies and contextualizing data,
the curriculum currently lacks specific support for broader ethi-
cal discussions, including data use in AI. Furthermore, while the
curriculum touches on the data pipeline, it does not yet include
machine learning activities, which needs further exploration [33].

Several tensions highlight challenges and opportunities for fu-
ture work, such as balancing student-driven data collection with
the need for teacher preparation and classroom time. Finding man-
ageable open data for students is challenging, but curriculum scaf-
folding can assist with data cleaning and preparation [3]. We must
consider the size and messiness of curated data to maintain au-
thentic experiences without overwhelming students or teachers.
The cross-disciplinary nature of data science also presents both
opportunities and challenges. We will continue testing ways to
support problem-definition routines that connect students to their
interests and community issues. Lastly, there is a tension between
using authentic tools connected to professional practice (such as
Python and R) and more accessible tools for computational think-
ing (such as MIT App Inventor). While we build on D’Ignazio’s
advocacy for data literacy pathways in non-technical fields [8], our
goal is fostering computational thinking, cross-cutting conceptual
understanding, habits of mind, and processes, rather than job prepa-
ration. Our future efforts will focus on co-designing the curriculum
with teachers and investigating various student data collection
methods from different disciplines (e.g., community surveys, social
media, personal data logs) to ensure that the resources can support
non-technical practitioners.
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